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IMPORTANCE Brain aging elicits complex neuroanatomical changes influenced by multiple
age-related pathologies. Understanding the heterogeneity of structural brain changes
in aging may provide insights into preclinical stages of neurodegenerative diseases.

OBJECTIVE To derive subgroups with common patterns of variation in participants without
diagnosed cognitive impairment (WODCI) in a data-driven manner and relate them
to genetics, biomedical measures, and cognitive decline trajectories.

DESIGN, SETTING, AND PARTICIPANTS Data acquisition for this cohort study was performed from
1999 to 2020. Data consolidation and harmonization were conducted from July 2017 to July 2021.
Age-specific subgroups of structural brain measures were modeled in 4 decade-long intervals
spanning ages 45 to 85 years using a deep learning, semisupervised clustering method leveraging
generative adversarial networks. Data were analyzed from July 2021 to February 2023 and were
drawn from the Imaging-Based Coordinate System for Aging and Neurodegenerative Diseases
(iSTAGING) international consortium. Individuals WODCI at baseline spanning ages 45 to 85 years
were included, with greater than 50 000 data time points.

EXPOSURES Individuals WODCI at baseline scan.

MAIN OUTCOMES AND MEASURES Three subgroups, consistent across decades, were
identified within the WODCI population. Associations with genetics, cardiovascular risk
factors (CVRFs), amyloid β (Aβ), and future cognitive decline were assessed.

RESULTS In a sample of 27 402 individuals (mean [SD] age, 63.0 [8.3] years; 15 146 female
[55%]) WODCI, 3 subgroups were identified in contrast with the reference group: a typical
aging subgroup, A1, with a specific pattern of modest atrophy and white matter
hyperintensity (WMH) load, and 2 accelerated aging subgroups, A2 and A3, with
characteristics that were more distinct at age 65 years and older. A2 was associated with
hypertension, WMH, and vascular disease–related genetic variants and was enriched for Aβ
positivity (ages �65 years) and apolipoprotein E (APOE) ε4 carriers. A3 showed severe,
widespread atrophy, moderate presence of CVRFs, and greater cognitive decline. Genetic
variants associated with A1 were protective for WMH (rs7209235: mean [SD]
B = −0.07 [0.01]; P value = 2.31 × 10−9) and Alzheimer disease (rs72932727: mean [SD]
B = 0.1 [0.02]; P value = 6.49 × 10−9), whereas the converse was observed for A2
(rs7209235: mean [SD] B = 0.1 [0.01]; P value = 1.73 × 10−15 and rs72932727: mean [SD]
B = −0.09 [0.02]; P value = 4.05 × 10−7, respectively); variants in A3 were associated with
regional atrophy (rs167684: mean [SD] B = 0.08 [0.01]; P value = 7.22 × 10−12) and white
matter integrity measures (rs1636250: mean [SD] B = 0.06 [0.01]; P value = 4.90 × 10−7).

CONCLUSIONS AND RELEVANCE The 3 subgroups showed distinct associations with CVRFs,
genetics, and subsequent cognitive decline. These subgroups likely reflect multiple
underlying neuropathologic processes and affect susceptibility to Alzheimer disease, paving
pathways toward patient stratification at early asymptomatic stages and promoting precision
medicine in clinical trials and health care.
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A ging is associated with complex changes in brain struc-
ture and function. Diverse genetic, environmental, and
pathologic factors may trigger, aggravate, or protect

against pathophysiologic processes that underlie neurodegen-
eration and its clinical manifestation.1 These factors may act
independently, synergistically, or antagonistically. Common
age-associated neuropathologies such as Alzheimer disease
(AD) and vascular disease have long preclinical phases when
magnetic resonance imaging (MRI) can measure early brain
changes.2,3 Understanding early brain structural changes may
provide prognostic information about susceptibility to or pres-
ence of neurodegeneration and inform patient treatment and
stratification into clinical trials.

Investigation of heterogeneous brain changes in normal
to early pathologic brain aging spectrum requires large and di-
verse databases, not typical of individual neuroimaging stud-
ies. New harmonization methods allow cross-cohort construc-
tive integration of datasets, enabling rich mega-analyses.
Additionally, novel artificial intelligence (AI) methods, includ-
ing deep learning (DL), allow data-driven investigation into
subtle patterns of brain change.

Here, we unravel brain structural heterogeneity at cogni-
tively asymptomatic stages and relate it to genetics, lifestyle
risk factors, amyloid β (Aβ), cognitive, and clinical data. We
apply an advanced semisupervised DL clustering method
based on Generative Adversarial Networks (GAN4) called
Semi-Supervised Clustering via GANs (Smile-GAN5) to a
large, diverse data set drawn from 11 neuroimaging studies.
We hypothesized that we can identify subgroups of early
structural brain variability that will have distinct associa-
tions with biomedical measures and trajectories of cognitive
decline.

Methods
Imaging-Based Coordinate System for Aging
and Neurodegenerative Diseases Data
Data were drawn from the Imaging-Based Coordinate System
for Aging and Neurodegenerative Diseases (iSTAGING)6-8 in-
ternational consortium, a collaborative effort to consolidate
neuroimaging, clinical, and cognitive data from more than
39 000 individuals across the adult life span. Here, we in-
cluded time points from individuals without diagnosed cog-
nitive impairment (WODCI) (eMethods 1 in Supplement 1) aged
45 to 85 years at baseline scan from the following studies: the
Alzheimer Disease Neuroimaging Initiative (ADNI), Austra-
lian Imaging, Biomarker, and Lifestyle (AIBL) Study, Biomark-
ers for Older Controls at Risk for Dementia (BIOCARD), Balti-
more Longitudinal Study of Aging (BLSA), Coronary Artery Risk
Development in Young Adults (CARDIA) study, Open Access
Series of Imaging Studies (OASIS), University of Pennsylva-
nia Memory Center cohort (Penn-PMC), Study of Health in
Pomerania (SHIP), UK Biobank, Women’s Health Initiative
Memory Study (WHIMS), and Wisconsin Registry for Alzhei-
mer Prevention (WRAP). The supervisory committee of each
study approved its inclusion in this project. The institutional
review board of the University of Pennsylvania approved this

project. Participants self-identified with the following race and
ethnicity categories: Asian, Black, White, and other, which in-
cluded Hispanic or Latino, multiracial, Native American,
unknown, or other. Information about race and ethnicity is pre-
sented as given in the originating studies. Race and ethnicity
information was presented only to describe the study sample
description; it was not considered in the analysis.

All participants gave written informed consent to each
study for data acquisition and analyses according to the Dec-
laration of Helsinki. This study followed the Strengthening the
Reporting of Observational Studies in Epidemiology (STROBE)
reporting guidelines.

Image Preprocessing
A fully automated processing pipeline was applied to extract
morphometric variables from structural MRI. T1-weighted
image intensity inhomogeneity was corrected,9 followed by
multiatlas skull-stripping.10 A total of 145 anatomic regions of
interest (ROIs) were segmented using a multiatlas, multiwarp
label fusion-based method.11 Interstudy ROI harmonization was
performed using the Neuroharmonize toolbox6 (Raymond
Pomponio) (eMethods 2 in Supplement 1). White matter
hyperintensities (WMHs) were segmented from fluid-
attenuated inversion recovery (FLAIR) and T1-weighted
images using a DL-based method.12 A semiautomated visual
quality check tool13 was used to manually review WMH seg-
mentations. eTable 3 in Supplement 1 reports study imaging
parameters.

Study Design
Subgroups of structural brain measures of WODCI individuals
were independently examined in 4 decade-long age intervals
spanning 45 to 85 years; decade intervals were used to miti-
gate age-related effects during clustering. The first decade
spanned ages 45 years to younger than 55 years (notated
45-55 years). Participants older than 85 years were excluded
due to insufficient sample availability. Within each age inter-
val, the 145 harmonized ROI volumes were linearly corrected
for continuous age, sex, and a DL-based intracranial volume
measurement (DLICV)12 to avoid biasing the clustering with

Key Points
Question What patterns of morphological brain changes are
reproducibly detectable in cognitively unimpaired populations,
and what are their genetic, clinical, lifestyle, and cognitive
features?

Findings In this multistudy harmonized cohort of 27 402
individuals aged 45 to 85 years without diagnosed cognitive
impairment, 3 subgroups of structural brain measures in
decade-spanning groups in a data-driven manner were found:
1 typical and 2 accelerated aging subgroups, displaying distinct
associations with genetics, cognitive decline, cardiovascular
risk factors, and amyloid pathology.

Meaning Three genetically distinct and longitudinally stable
subgroups display brain changes reflecting differential
susceptibility to Alzheimer disease and other neurodegenerative
diseases, cognitive decline, and clinical progression.
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disease-unrelated neuroanatomical variations. Linear correc-
tion was performed due to the limited age range within each
interval. WMH volumes were cube-root transformed due to
skewness and then adjusted for the same covariates. Cor-
rected data were standardized to z scores. Principal compo-
nent analysis (PCA)14,15 was applied to anatomic ROI and
WMH volumes separately for dimensionality reduction with
the ultimate goal of detecting a group with low atrophy and
WMH volumes called resilient brain agers (A0) (eMethods 3
and eTable 4 in Supplement 1). Using A0 as a reference,
heterogeneity within the remaining samples was investigated
by fitting a Smile-GAN model independently for each age
group. Smile-GAN was trained jointly on the 145 anatomic
ROI and 8 lobar WMH volumes (eTable 5 in Supplement 1).
Clustering methods16-18 used to quantify heterogeneity in
neuroimaging are often limited by disease-irrelevant con-
founding variability. Smile-GAN, by learning a one-to-many
mapping from the reference (A0) to the target domains (non-
A0), models disease heterogeneity without being con-
founded by disease-unrelated factors (eg, demographics)
detectable in A0 (eMethods 4 in Supplement 1). PCA and
Smile-GAN models trained on baseline scans were applied to
available longitudinal scans within each age group.

Model Longitudinal Stability
Because clustering was performed using the model for the age
at the time of scanning, we investigated whether transition-
ing between study-defined age decades affects clustering sta-
bility/reproducibility using individuals with longitudinal scans.
We evaluated the longitudinal clustering stability for partici-
pants with scans acquired in multiple age groups, therefore
clustered using independently derived models, using as ref-
erence the stability of longitudinal imaging for participants that
remained within a single age group during follow-up.

Genetic Analysis
The Smile-GAN probability scores were used as phenotypes in
genome-wide association studies (GWASs) using imputed geno-
typing data from UK Biobank. We performed multiple linear
regressions controlling for continuous age, sex, DLICV, and the
first 40 genetic principal components19 via Plink 2, version
2.0.0 (Christopher Chang).20 Given the observed longitudi-
nal clustering stability, GWASs were performed for the entire
age range (45-85 years). Functional Mapping and Annotation21

was used to identify and annotate candidate single-
nucleotide variants (SNVs), independent significant SNVs,
(top) lead SNVs, and genomic loci (eMethods 5 in Supple-
ment 1). We queried the top lead SNV within each locus to de-
termine if a locus was novel—not previously associated with
any clinical traits—and the candidate SNVs to explore their
phenome-wide associations on GWAS Catalog.22 Addition-
ally, we calculated SNV-based heritability estimates (h2) using
genome-wide complex trait analysis, version 1.93.2 (Yang
Lab).23 Finally, we associated the Smile-GAN probability scores
with the polygenic risk score (PRS) for 2 subtypes of late-life
depression (LLD1 and LLD2) developed in our previous
studies.24,25 LLD1 was characterized by preserved brain struc-
ture, whereas LLD2 demonstrated diffuse brain atrophy.

Statistical Analysis
Voxel-based morphometry (VBM)26,27 as implemented in
Statistical Parametric Mapping, version 12,28 running on
MATLAB, version R2017b (Mathworks Inc) was used to com-
pare subgroups in gray matter (GM) patterns using tissue
density maps (Regional Analysis of Volumes Examined in
Normalized Space [RAVENS]),29 considering continuous age,
sex, and DLICV as covariates. Multiple-voxel testing was cor-
rected by controlling the familywise error rate via random field
theory30 at 0.1%. Complementary to mass-univariate voxel-
based subgroup comparisons, we also applied a manifold learn-
ing technique called locally linear embedding (LLE)31,32 to map
high-dimensional imaging patterns into a low dimensional
space that allowed visualization of multivariate data (eMethods
6 in Supplement 1).

We examined the clinical, cognitive, biomarker, and apo-
lipoprotein E (APOE) allele associations of the subgroups in
each age group separately. Linear and logistic regressions
were performed for continuous (eg, Trail Making Test B) and
categorical features (eg, smokers vs nonsmokers), respec-
tively. For cognitive outcomes having overdispersed and
skewed distributions (eg, MMSE), the beta-binomial
distribution33 was fitted. The regression models included
subgroup labels while adjusting for continuous age, sex, and
study (and education for cognitive scores). For features
showing consistent trends across more than 1 age group, the
data from multiple age groups were pooled together, and
subgroup differences were reexamined using 1 model in the
combined dataset over broader age ranges considering the
study × age interaction term. Differences across subgroup
intercepts were assessed using the Wald test.34 Multiple com-
parison corrections were conducted for the number of fea-
tures by controlling the false discovery rate35 at 5%.

We fit linear mixed-effects models with subject-specific
random intercept to estimate the rate of change per year for
atrophy, WMH, cognition, SPARE-AD (Spatial Pattern of
Abnormality for Recognition of Early Alzheimer Disease)—a
signature of AD-specific regional brain atrophy,36 which has
also been found to predict progression from normal cogni-
tion to mild cognitive impairment (MCI)36—and SPARE-BA
(Spatial Pattern of Atrophy for Recognition of Brain Aging)—a
structural MRI-based brain age estimation.37 Both SPARE
models were previously validated.7,8,36-39 The linear mixed-
effects models included subgroup indicators, time of visit,
and their interaction term while adjusting for baseline age,
sex, study, education, and DLICV. Rate of change subgroup
comparisons were conducted using the Wald test.34 The lon-
gitudinal analyses were conducted considering individuals
with 4 or more longitudinal measures to reduce uncertainty
in slope estimation.

Development of MCI defined by the individual participat-
ing study (eMethods 1 in Supplement 1) was used to indicate
longitudinal cognitive deterioration. Survival curves for time
to progression to MCI were generated using a nonparametric
Kaplan-Meier estimator40; the log-rank test41 was used to com-
pare the curves between subgroups. All P values were 2-sided,
and a P value <.05 was considered statistically significant. Data
were analyzed from July 2021 to February 2023.
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Results

Consistent Accelerated Brain Aging Patterns
Across Age Groups
In this cohort study, we included 58 113 time points from 27 402
individuals (mean [SD] age, 63.0 [8.3] years; 15 146 female

[55%]; 12 256 male [45%]) WODCI. A flowchart depicting the
sample selection procedure is displayed in eFigure 1 in Supple-
ment 1. Participant demographics for baseline and longitudi-
nal (n =3567) cohorts are given in eTables 1 and 2 in Supple-
ment 1. Participants self-identified with the following race and
ethnicity categories: 313 Asian (1.1%), 838 Black (3.1%), 23 398
White (85.4%), and 2853 other (10.4%). PCA defined the A0

Figure 1. Structural Profile of the Brain Aging Subgroups for the 4 Age Groups
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A, Significant gray matter (GM) volumetric reduction (familywise error P <.001)
for the Smile–Generative Adversarial Network (GAN) subgroups compared with
the A0 group in each age group. Voxel-based morphology comparisons
between the subgroups of all age groups and the A0 group in the 45- to 55-year
age groups are presented in eFigure 2 in Supplement 1. Warmer colors indicate
regions with severe GM atrophy, whereas cooler colors represent lower atrophy
areas. An overlay brain template in gray colors is used. B, Average white matter
hyperintensity (WMH) maps computed by averaging WMH regional analysis of
volumes examined in normalized space (RAVENS) maps aligned to a common

atlas space within each region of interest. Pinkish colors indicate regions with
lower WMH burden, whereas whitish colors indicate high WMH burden regions.
An overlay brain template in gray colors is used. C, Three-dimensional (3-D)
projected locally linear embedding space derived from brain volumetric
measures (eMethods 6 in Supplement 1). The data points have been colored
based on the subgroup labels. This projection allows visualization of subgroups
across the age groups; as a projection, the axes are not directly meaningful.
LLE indicates locally linear embedding.
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resilient group as participants with the lowest atrophy and
WMH volume within each age group. Referenced to A0,
Smile-GAN showed optimal stability for 3 clusters (k = 3), mea-
sured by the Adjusted Rand Index42,43 (eTable 6 in Supple-
ment 1). Two types of phenotypes from this clustering scheme
were used for subsequent analyses. The Smile-GAN sub-
group probability was the direct model output, representing
a continuous variable for each of the 3 clusters for each par-
ticipant, with the sum of these 3 probabilities equaling 1; the
Smile-GAN subgroup was decided by taking the highest prob-
ability (dominant subgroup). Although derived indepen-
dently by age decade, the Smile-GAN subgroups, A1, A2, and
A3, showed consistent differences in atrophy and WMH load

compared with A0 (Figure 1A). A1 showed mild, predomi-
nantly peri-Sylvian atrophy. A2 displayed greater peri-
Sylvian atrophy accompanied by atrophy in orbitofrontal and
other prefrontal regions. A3 had diffuse atrophy across the
brain, including the medial frontal regions and thalamus. WMH
burden was higher in A2 than in the other subgroups
(Figure 1B). Among A1, A2, and A3, A1 had the least atrophy
and was the largest subgroup, therefore, it may be consid-
ered typical aging. In comparison, A2 (highest lesions) and A3
(most severe atrophy) are considered accelerated aging sub-
groups. VBM within the 75- to 85-year age group showed less
prominent between-subgroup differences due to relatively
more advanced atrophy in the 75- to 85-year age group in A0

Figure 2. Clinical, Cognitive, Amyloid β, and Apolipoprotein E (APOE) ε4 Carrier Status Trends of the Brain Aging Subgroups at Baseline
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The plotted features are those nonimaging features that showed consistent
trends across more than one age group, presented as a summary after pooling
data across age groups. The age ranges above the plots indicate the broader age
groups examined. The amyloid β status (positive vs negative) was defined as
described in eMethods 8 in Supplement 1. For cardiovascular risk factors and
depression, the status was determined as described in eMethods 9 in
Supplement 1. APOE ε4 carriers were considered those having 1 or 2 ε4 alleles.
The box plots show the residuals after adjustment for continuous age, sex, and
study (and education for cognitive test scores) for each subgroup (eMethods 10
in Supplement 1). Higher Mini-Mental State Examination (MMSE), Digit Span
Backward (DSB), and California Verbal Learning Test (CVLT) scores indicate

better cognition, whereas lower Trail Making Test B (TMT-B) scores indicates
better cognition; TMT scores are presented with an inverted scale, therefore,
poorer cognitive performance is in the same direction across the 4 graphs. The
horizontal line shows the median value. The bar plots show the percentage of
participants with various risk factors for each subgroup. N indicates the sample
size for the graph. False discovery rate correction for multiple comparisons with
a P value threshold of .05 was applied. The complete list of features found
consistent across more than 1 decade is given in eTable 10 in Supplement 1.
a P <.001.
b P <.05.
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compared with younger A0 groups and more structural
variability in this age group (Figure 1A; and eFigure 2 in Supple-
ment 1). The average brain age difference between the young-
est- and oldest-appearing brains (A0 vs A3) was approxi-
mately 10 years and relatively consistent across age groups
(eFigure 3 in Supplement 1).

We found that longitudinal scans within 1 age interval
showed approximately 85% consistency of cluster assign-
ment. We observed approximately 80% longitudinal
stability of clustering assignments in participants who aged
into the next interval within a follow-up of 3 years or less,

even though entirely independent clustering models were
applied to scans at the different age intervals (eg, partici-
pants classified as A2 using the 55-65 years model were
mostly classified as A2 on follow-up scans using the 65-75
years model). Furthermore, eTables 7 and 8 in Supplement 1
display the mean Smile-GAN probability shifts between 2
consecutive scans within the same age group and across
different age groups, respectively. Our findings indicate
that the magnitude of probability changes across decades
was comparable with those observed within the same
decade.

Figure 3. Genetic Analyses of the Smile–Generative Adversarial Network (GAN) Probability Scores (A1, A2, and A3)
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in Supplement 1. An exemplary genomic locus associated with the A2
probability score is shown in eFigure 8 and eTable 13 in Supplement 1.
B, Phenome-wide associations from the GWAS Catalog. Independent significant

SNVs inside each locus were associated with many clinical traits, which were
further classified into high-level groups, including gray matter (GM) measures
(eg, [sub]cortical volume, cortical thickness, and surface area), white matter
(WM) measures (eg, whole-brain–restricted isotropic diffusion and
whole-brain–free water diffusion), cardiovascular diseases (eg, coronary artery
disease and myocardial infarction), cerebrovascular diseases (eg, nonlobar
intracerebral hemorrhage and stroke), hematological traits (eg, platelet,
eosinophil, and white blood cell counts), mental conditions (eg, risk-taking
behavior and suicide attempts), etc. We also found individual traits such as
Alzheimer disease, white matter hyperintensities (WMHs), cardiovascular risk
factors, education, and others.
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Figure 4. Longitudinal Outcomes
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and their interaction term while adjusting for baseline age, sex, study,
education, and deep learning–based intracranial volume measurement (DLICV).
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or cognitive decline) is in the same direction across graphs. C, Kaplan-Meier
survival curves show the probability of remaining participants without
diagnosed cognitive impairment (WODCI) and not progressing to mild cognitive
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Log-rank test was used to compare the survival curves of the Smile-GAN
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a P <.001.
b P <.05.
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Branched Continuum Across Resilient, Typical,
and Accelerated Aging
Although VBM suggested a primary difference in severity
across subgroups, examination of differences in location and
severity of atrophy identified unique volumetric fingerprints
across subgroups. Figure 1C shows the 3-dimensional pro-
jected LLE space derived from brain volumetric measures,
revealing worse atrophy in A1 compared with A0, followed
by diverging branches for A2 and A3, especially after age 65
years. These axes echo the variability of distances between
regional measures seen in radial plots (eMethods 7 and eFig-
ure 4 in Supplement 1). WMH volumes were not included in
LLE analyses; the 2-axes divergence exclusively reflects
atrophy subgroups and not the distinct difference in WMH
burden.

Clinical, Cognitive, Biomarker and APOE ε4
Genotype Features
We examined between-subgroup differences in clinical and
cognitive features, Aβ, and APOE ε4 carrier status for each
age group separately (eTable 9 in Supplement 1). eFigure 5
in Supplement 1 shows the complete list of features exam-
ined and their availability. Features that showed consistent
trends across more than 1 age group are summarized in
Figure 2 after reanalyzing pooling data. Consistent with the
known association of cardiovascular disease (CVD) and
WMH, we found that A2 had the highest proportion of par-
ticipants with cardiovascular risk factors (CVRFs), including
hypertension and obesity. A2 and A3 had similarly higher
proportions of smokers and individuals with diabetes than
A0 and A1.

Although A2 did not show the most severe atrophy, it
had the highest prevalence of APOE ε4 carriers and, after
age 65 years, the most elevated proportion of cerebral
Aβ positivity (Aβ+). However, trends toward a higher

prevalence of APOE ε4 carriers and higher Aβ+ prevalence
in A2 vs A3 were not statistically significant (eTable 10 in
Supplement 1). Regarding Aβ measures, the only statisti-
cally significant difference was the higher prevalence of Aβ+
in A2 compared with A0. These findings suggest that none
of the Smile-GAN subgroups were specifically an early
AD-related group, but the A2 subgroup had a higher preva-
lence of AD pathologic change.

Although participants were selected as not having been
diagnosed with cognitive impairment, the A2 and A3 accel-
erated aging subgroups showed poorer cognitive test perfor-
mance compared with the A0 and A1 subgroups for ages 55
to 75 years. Despite different structural features, A2 and A3
did not differ significantly in cognitive performance across
domains. Thus, poorer cognitive performance in A2 and A3
appears to reflect additive effects of atrophy and WMH.
Additionally, A3 had the highest proportion of individuals
experiencing depression after age 55 years.

Genome-Wide Associations
of the Smile-GAN Probability Scores
The Smile-GAN probability scores (A1, A2, and A3) were asso-
ciated with 5, 9, and 4 genomic loci, respectively. Several loci
were previously identified, whereas others were novel
(Figure 3A and eTable 11 in Supplement 1). An exemplary ge-
nomic locus associated with the A2 probability score is shown
in eFigure 8 and eTable 13 in Supplement 1. These previously
identified loci were associated with various clinical traits, in-
cluding imaging-derived phenotypes from white matter mi-
crostructure (A1-3),44 gray matter atrophy (A1-3),45 WMH
(A1-3),46 CVRFs (A1-2),47 CVD (A1-2),48 and AD (A1-2)49

(Figure 3B). The GWAS Catalog query is detailed in the eFile
in Supplement 2.

Several SNVs exerted pleiotropic effects on more than
1 phenotype/probability with opposite directions of

Figure 5. Schematic Summary of Key Features of the Brain Aging Subgroups

A0: resilient brain aging
• Preserved brain volumes
• Lowest CVRFs
• Highest baseline cognition
• Brain age approximately 
   7 y younger than 
   chronological age

A1: typical brain aging
• Mild atrophy, particularly 
   peri-Sylvian and prefrontal
• Modest CVRFs
• Intermediate cognitive profile
• Genetic factors protective for WMH
• Intermediate clinical progression to MCI
• Brain age approximately 2-3 y 
   younger than chronological age

A2: vascular aging
• Highest and fastest-growing WMH
• Higher CVRFs
• Genetic risk for WMH
• APOE ε4 enriched
• Aβ enriched (≥65 years)
• Poorer cognitive profile
• Higher progression to MCI
• Brain age approximately 2-3 y older
   than chronological age

A3: atrophy-predominant aging
• Highest brain atrophy
• Low WMH
• Not APOE ε4 or Aβ enriched
• Poorer cognitive profile
• Most unfavorable progression to MCI
• Brain age approximately 3-5 y 
   older than chronological age
• Higher depression prevalence

Aβ indicates amyloid β;
APOE, apolipoprotein E;
CVRF, cardiovascular risk factor;
MCI, mild cognitive impairment;
WMH, white matter hyperintensity.
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t h e a s s o c i a t i o n e f f e c t s . Fo r e x a m p l e , A 1 ( m e a n
[SD] B = −0.07 [0.01]; P value = 2.31 × 10−9 and mean [SD]
B = −0.09 [0.02]; P value = 4.09 × 10−8) and A2 (mean
[SD] B = 0.1 [0.01]; P value = 1.73 × 10−15 and mean [SD]
B = 0.13 [0.02]; P value = 1.04 × 10−15) were associated with
the 2 novel independent variants (rs7209235 and
rs55715426 at cytogenetic region:17q25.1), whose mapped
genes GALK1 and H3-3B were associated with several CVD
biomarkers, including cholesterol50 and apolipoprotein B.51

Therefore, these variants may be protective against CVD for
A1 but may serve as risk variants for A2. Furthermore, A1
(mean [SD] B = 0.1 [0.02]; P value = 6.49 × 10−9) and A2
(mean [SD] B = −0.09 [0.02]; P value = 4.05× 10−7) were
both associated with the candidate SNV rs72932727 (cytoge-
netic position:2q33.2) previously associated with the AD
PRS.49 Because A2 had the highest prevalence of APOE ε4
carriers and participants who were Aβ+, opposite to A1,
rs72932727 may play a protective role against AD for A1 and
may be a risk factor for A2.

Finally, variants in A3 were associated with regional atro-
phy (rs167684: mean [SD] B = 0.08 [0.01]; P value = 7.22 ×
10−12) and white matter integrity measures (rs1636250:
mean [SD] B = 0.06 [0.01]; P value = 4.90 × 10−7). A3 was
significantly associated with both PRS-LLD1 and LLD2
with opposite direction association effects (LLD1: mean [SD]
B = −0.05 [0.01]; P value <.001, LLD2: mean [SD]
B = 0.05 [0.01]; P value = .001). A1 was associated with the
PRS-LLD1 (mean [SD] B = 0.04 [0.02]; P value = .007), with
LLD1 characterized by preserved brain volume (eTable 12 in
Supplement 1). Moreover, the imaging-derived phenotypes
showed highly significant SNV-based heritability estimates (A1:
h2 = 0.44 [0.04], A2: h2 = 0.55 [0.04], A3: h2 = 0.45 [0.04]; all
P values <10−4).

Longitudinal Outcomes
Across individuals with 4 or more longitudinal MRI scans
(n = 670; mean [SD] follow-up, 8.0 [4.7] years; baseline
mean [SD] age, 69.2 [8.9] years), we observed small differ-
ences between subgroups in longitudinal atrophy (Figure 4
and eTable 14 in Supplement 1). Progression of WMH
(n = 595; mean [SD] follow-up, 8.1 [4.9] years; baseline mean
[SD] age, 69.3 [8.9]) was significantly faster in A2. A2 and A3
subgroups showed the greatest longitudinal cognitive
decline (number of individuals with longitudinal cognitive
scores was 438 to 1933, mean [SD] longitudinal cognitive
testing was over 5.0 [2.6] years to 8.0 [4.7] years across tests,
and mean [SD] baseline age was over 69.4 [6.5] years to 70.7
[8.4] years across tests) in agreement with the faster progres-
sion from cognitively unimpaired to MCI (Figure 4C),
emphasizing the long-term implications of the baseline MRI
subgroups.

Discussion
Genetics, lifestyle, CVRFs, and neuropathologies modify
brain aging heterogeneously across individuals even before
cognitive symptoms are expressed. We applied advanced DL

methods to a large, diverse, harmonized multicohort sample
to find characteristic neuroanatomical subgroups of brain
variation. Consistent subgroups of brain aging emerged in
each of the decade-long intervals between 45 and 85 years:
A1, or typical aging subgroup with low atrophy and WMH
load, and 2 accelerated aging subgroups, A2 and A3. Thus,
we observed heterogeneity of brain aging in the WODCI
population with stable patterns across decades. These sub-
groups were detectable from midlife and had associations
with cardiometabolic and genetic risk factors and cognition
(Figure 5).

One of our primary findings was the emergence of 2 ac-
celerated brain aging trajectories, best visualized from the
manifold algorithm, which were particularly distinct in indi-
viduals 65 years and older. A2 was associated with hyperten-
sion, WMH, and vascular disease-associated genetic risk fac-
tors, evidenced by the GWAS (Figure 3A), and opposite from
the protective effect in A1. This subgroup was also mildly en-
riched for Aβ+ (ages ≥65 years) and AD-related genetic risk
factors, including APOE ε4. A3 showed widespread GM
atrophy and moderate presence of CVRFs. Thus, A2 and A3
may have different brain reserve,52 affecting susceptibility to
future pathology.

Despite differences in patterns of atrophy, A2 and A3 had
comparable poorer cognitive functions than A0. Thus, atro-
phy and WMH seem to act additively to cause cognitive
decline. This may account for lower atrophy in A2 vs A3; fur-
ther atrophy may predispose to conversion to MCI, resulting
in exclusion from this WODCI cohort. Although we did
not define underlying pathology related to neuroimaging
findings, such an effect is comparable with prior studies
showing that the combined involvement of neurodegenera-
tive and vascular pathology is more pronounced in the earli-
est stages of cognitive impairment.53,54 All subgroups had
low SPARE-AD scores, indicating no significant AD-related
neurodegeneration. Overall, Aβ+ individuals represented a
minority and were relatively evenly distributed across sub-
groups, suggesting that factors influencing structural brain
aging in this WODCI population may be largely independent
of AD before the emergence of symptoms. A3, on the other
hand, was not uniquely enriched in a particular studied car-
diovascular risk factor; it had the highest prevalence of
depression, and the A3 probability score was associated with
depression-related PRS. Further investigation of the associa-
tion of A3 with other risk factors is warranted to understand
this group better.

Strengths and Limitations
This study has several strengths, including the large, diverse,
multisite sample covering a wide age range and the use of
advanced harmonization and DL methods. Additionally,
identifying multiple SNVs associated with WMH and brain
atrophy is consistent with the neuroimaging profile of the
subgroups. However, this study also has limitations. First,
the heterogeneity in sampling strategies and data acquisition
of each contributing study might impede generalization.
Second, there is low availability of amyloid data and insuffi-
cient availability of tau measures and biomarkers related to
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non-AD neurodegeneration. Third, the lack of long-term
follow-up prevents the derivation of robust conclusions
regarding the clinical progression and transition to MCI.
Fourth, regarding sample composition, there is a ceiling
effect as people with more severe findings are more likely to
be classified as cognitively impaired and thus be excluded
from the sample. Fifth, although we have observed certain
morphologic and correlation similarities of subgroups across
decades, the equivalence of the subgroups across decades
cannot be proved because different models were used in
each decade, and there was not substantial follow-up across
decades.

Conclusions

In this multicohort study, consistent and reproducible neuro-
imaging subgroups defined by regional atrophy and WMH bur-
den were identified across individuals aged 45 to 85 years with-
out diagnosed cognitive impairment. Two axes of accelerated
aging emerged, one showing elevated CVRFs and enrichment
of cerebral Aβ and the other with more diffuse and severe at-
rophy. These subgroups likely reflect differential susceptibil-
ity to AD and other neurodegenerative diseases, cognitive
decline, and clinical progression.
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